弹性力学教学中数学与力学问题的美学探讨

2022-03-09 08:17:48 | 浏览次数:

摘要:考虑工科本科生教学特点,在弹性力学教学中,抓住数学和力学问题的内在联系,采用矩阵表达的形式阐述直角坐标与极坐标的变换关系,以及物理量(如位移、体力、应力、应变)的坐标变换关系,并利用坐标变换从直角坐标中的基本方程直接导出极坐标中的基本方程。按照这一教学思路,将数学知识与弹性力学有机结合,简化基本方程的推导过程,在对知识点深入和透彻讲解的同时,可与学生共同体会和分享数学与力学完美融合过程中的美学感受。

关键词:弹性力学;本科教学;坐标变换;基本方程;美学

中图分类号:G6420文献标志码:A文章编号:10052909(2015)01005905审美和求知是人类与生俱来的天性。数学和力学中的美学思想是科学美学的一个重要研究方向。自然界在本质层次上是美的,揭示与描述数学与力学具有的简洁美、对称美、和谐美、统一美、奇异美等美学特征[1],可以让人们感受科学并不仅仅是繁琐的计算、枯燥的实验、冗长的资料,还可以带来更多美的享受。

力学教学中有大量枯燥乏味的公式,深入、透彻地讲解这些系统知识,帮助学生构筑力学知识体系,是力学教师永恒的主题[2]。作为师者既要注重基础力学的系统性,又要让力学教学呈现丰富多彩的一面,引导学生发掘其中的数学与力学之美。笔者结合弹性力学本科教学,以矩阵表达的形式统一介绍直角坐标与极坐标的变换关系,以及物理量(如位移、体力、应力、应变)的坐标变换关系,并利用这些坐标变换关系,直接从直角坐标中的基本方程导出极坐标中的基本方程,通过这一教学实践来阐述数学与力学问题的美学感受。基于数学、力学与美学的关联性开展教学,分享数学方法与力学技巧的美学感受,可加深对力学理论内涵的理解,培养学生的学习兴趣和创新能力。

一、坐标变换关系中的美学

在弹性力学平面问题中,直角坐标与极坐标的变换关系、以及物理量(如位移、体力、应力、应变)的坐标变换关系一般采用展开形式来表达,这种形式既繁琐、难记忆,又不利于发现直角坐标与极坐标间的内在联系。虽然采用张量指标记法可以达到更为简洁的书写目的,但对于初学者而言难于理解,在工科本科生的教学中不宜采用张量指标记法。采用矩阵形式可以充分利用已学的数学知识[3],能直观地展现坐标变换关系中的数学与力学美。

(一)直接坐标与极坐标的变换关系

直角坐标(x,y)与极坐标(ρ,φ)的一阶导数变换公式,采用展开形式为[4]

采用矩阵形式表达,可以清晰地展现直角坐标与极坐标间的对应关系:

自然地,从式(3)中能衍生出一些结论,例如算子:

总之,采用矩阵形式,体现了坐标变换关系中的数学美:(1) 简洁美,表达形式简洁,容易记忆;(2)和谐美,体现直角坐标与极坐标间的内在对应关系;(3)对称美,变换矩阵β是一个正交矩阵,即β-1=βT,这一优良特性体现了直角坐标与极坐标相互变换的对称性。上述坐标变换关系展示了以简洁、和谐、对称为主要形式的古典美。

(二)位移、体力的坐标变换关系

在弹性力学问题中,位移和体力都属于矢量,矢量的坐标变换关系式,可直接采用矩阵形式来表达。例如,位移分量的坐标变换关系[5]:

其中,fx和fy为直角坐标中的体力分量,fρ和fφ为极坐标中的体力分量。

可见,位移分量的坐标变换式(5)、体力分量的坐标变换式(6)与一阶导数变换公式(1b)具有完全相同的变换形式,展现了数学和力学问题的统一性。因此,可将式(1b)、式(5)及式(6)统称为一次坐标变换关系式。

(三)应力、应变的坐标变换关系

应力张量或应力矩阵的坐标变换关系类似于坐标的二阶导数变换式(2b),采用矩阵形式表达为[5]:

为张量剪应变。由此可见,应力的坐标变换式(7)、应变的坐标变换式(11)以及二阶导数变换公式(2b),也具有完全统一的二次坐标变换形式,进一步地展现了数学和力学问题的统一美。因此,可将式(2b)、式(7)和式(11)统称为二次坐标变换关系式。上述有关坐标变换关系的矩阵表达形式,展现了数学和力学问题中的简洁美、统一美和对称美,对上述坐标变换关系的深入探索可以获得极坐标中基本方法推导的奇异美。二、极坐标中基本方程推导的美学在一般的本科弹性力学教材中,对于平面问题极坐标中的基本方程,多采用与直角坐标相类似的微元推导方法,其推导过程较为繁冗,学生学习比较困难。利用上述坐标变换关系,将直角坐标中的基本方程直接变换到极坐标中,既是数学变换的自然结果,也是力学问题在直角坐标与极坐标中表达的内在统一结果。事实上,采用坐标变换推导极坐标中的基本方程,能进一步感受到数学与力学的神奇与美妙,展示出以统一和奇异为主要形式的浪漫美。

(一)平衡微分方程的推导根据式(1a),可知:

由式(16)可知,平衡微分方程的坐标变换属于一次坐标变换关系式,体现了平衡微分方程在直角坐标与极坐标中表达的内在统一性。上述推导过程简单、严谨、明了,清晰地展现了数学和力学问题的完美融合。采用矩形表达形式,能抓住力学问题的本质,可对力学问题作更新、更深层次的探索。

(二)几何方程的推导根据式(1a),有:

式(24)即为极坐标中的物理方程(平面应力情况)。对于平面应变情况,只需将式(24)中的弹性模量E换成E/(1-μ2),泊松比μ换成μ/(1-μ)即可。在上述基本方程的推导中,体现了数学和力学问题的统一美与奇异美,同时也表现出简洁美。利用坐标变换关系式,从直角坐标中的基本方程直接导出极坐标中的基本方程,相比于一般本科教材中的微元推导方法,其推导过程更为简洁易懂,相比于张量指标记法则更直观明了,更便于弹性力学初学者理解。三、结语审美决定了人的价值取向,更是研究人员从事科学研究的驱动力。在力学教学和研究中,发现和分享数学与力学之美能带给人愉悦的美学感受。抓住力学问题的本质,深入探索力学问题中的数学美与力学美,有助于对力学教学和研究作更新和更深层次的探索,甚至可能会做出某些具有重要意义的科学发现。开展数学、力学与美学的关联性教学,在讲授力学公式推导和解题方法的同时,将数学和力学问题的美学魅力展现给学生,让学生在获得知识的同时,加深对力学理论丰富内涵的理解,分享美学感受和接受美学熏陶,可激发学生学习力学的兴趣,启迪学生思维,开阔研究视野,有助于培养学生的思维能力和创新能力。

推荐访问: 力学 美学 弹性 探讨 数学